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Material line and surface elements transported in a turbulent velocity field increase 
in length or area a t  an exponential rate. In  this paper we investigate how the 
stretching rates are related to the statistical properties of the velocity field both 
analytically and numerically in simple models of turbulence. In  a Gaussian model the 
statistics exhibit time-reversal invariance. We demonstrate that, as pointed out by 
Kraichnan (1974), this leads to equality of line and area stretching rates. We also 
construct a model which violates the time-reversal property and splits the values of 
the rates for lines and surfaces. The sign of the splitting depends on the sign of the 
time-reversal breakdown. 

1. Introduction 
The stretching of line and surface elements by turbulent flow is a problem of 

considerable significance both for understanding the geometry of turbulence itself 
and also for its relevance to applications in turbulent flame propagation, mixing of 
reactants, etc. In  this paper we study this problem both theoretically and by 
numerical simulation. We are interested, in particular, in the relationship between 
the stretching of line and surface elements. This has been considered by a number of 
authors (Batchelor 1952; Cocke 1969; Orszag 1970; Kraichnan 1974). The results of 
our analysis are in general consistent with theirs but differ in certain important 
aspects. We point out the significance for this relationship of the time-reversibility 
or its lack in the statistics of the turbulent flow which was first discussed by 
Kraichnan (1974). 

In $2 we set out the theoretical background for line elements in turbulent flow, and 
present the results of numerical simulations using a simple model turbulence 
(Kraichnan 1970; Drummond, Duane & Horgan 1984) in $3. In  $4 we discuss the 
stretching of surface elements and the relationship with the behaviour of line 
elements. We introduce a numerical model turbulence lacking time-reversal 
invariance in 95 and illustrate how the stretching rates for lines and surfaces can be 
made to differ with respect to each other. Finally we draw some conclusions in $6 
from our results which have some significance for the nature of turbulent flow. 

2. Line element stretching 
Line element stretching was first discussed by Batchelor (1952). The general idea 

behind this analysis is that while there is a timescale governing the asymptotic form 
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of the probability distribution P(1, t )  for the length of a line element transported by 
t,he turbulence, there is no lengthscale. These considerations led Batchelor to set 

where L(t) is the average length of the line element a t  time t .  For large times it has 
the form 

(2.2) Jw) = Lo exp (yt), 

where y is the asymptotic value of the fractional rate of stretching of a material line 
transported by the turbulent flow. 

While this idea is substantially correct it is a little too restrictive. It is possible to 
define a scqucnce of strctching exponents by considering the behaviour of various 
powers of 1.. For example we set 

1 d(P) 
YP = p 0 7 ’  

d 
for p > 0 and Yo = %(log (0). (2.4) 

Note yo = limp+o yp. On the Batchelor hypothesis all members of the sequence would 
have the same value. This is not precisely the case. We can compute yp as a power 
series in the velocity field and the results exhibit a dependence on the value of p .  

The evolution of a line element 1, in a velocity field u(x ,  t )  is 

dl. 
dt 
- = m&(t)E*, 

where wij(t) = %,j(X(t), t )  (2.6) 

dx 
-x = u(x ,  t ) .  (2.7) dt 

and X(t)  is a solution of 

The solution of ( 2 . 5 )  has the form 

W) = Uij(4 (2.8) 

with 

-+ 

where T denotes the time ordering, i.e. for {A(t,),B(t,)} and ti < ti, we have 

TA(t,) B(t,) = B(t,) A(t,). Of course, 
+ 

(2.10) 
d -u = w u .  
dt 

It is convenient to split W into a symmetric part B and an antisymmetric part A. 
Introduce the orthogonal rotation matrix R(t) which obeys 

d 
dt 
- R  = AR, 

where R = Gexp ([ dt’A(t’)) 

(2.11) 

(2.12) 
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Now put U = R M  (2.13) 

- VM, (2.14) and we have 
d M  
dt 
-- 

where 

Note that V(t) is a symmetric matrix. 

V(t) = RT(t) B(t) R(t). 

It follows that 
~ ( t )  = Gexp (S, dt’v(t’)) 

(2.15) 

(2.16) 

Now the orthogonality of R(t) allows us to conclude that 

P(t )  = (ZT(0) W(t) M(t) Z(0))t (2.17) 

If we evaluate the time-ordered exponential in (2.16) then we can write 

W M  = 1+C, (2.18) 

where C is O(u) and 1 is the unit matrix. Assuming Zi(0) is a unit vector we find 

P ( t )  = l++pzT(o)Cz(O)+~(+p--1) (F(O)CZ(0))2 

+ + ~ ( + - i )  (&-2) ( ~ ( 0 )  cz(0))3+ .... (2.19) 

Since we shall apply (2.19) in the context of isotropic turbulence we shall lose nothing 
by averaging over the direction of Z(0). I n  this sense we find, in D-dimensional space, 

1 1 p(2 tr C2 + (tr C)’) 
4D(D + 2) 

~ ( t )  = l+-ptrC+(&-l )  
20 

p ( 8  t r  C3+6 t r  C2 tr C+ (tr  C)3)+ .... 1 
12D(D+2) (D+4) + (kP - 1 1 ( 2 P  - 2) 

(2.20) 

Subsequently we average over the velocity field ensemble to obtain ( P ( t ) ) .  The 
result is to O(u3) 

- a p  1 dt’(tr V(t) V(t’)) 
1 d(P) 

y p = p ( l p ) d t -  

+@,[dt‘ldt“(tr V(t) V(t’) V(t”)) + ..., (2.21) 

where 
2 4 

clp = -+ f&--l), D D(D+2) 
(2.22) 

( ~ -  1) (gp-2). (2.23) 
2 12 16 

(kP- ‘ ) + D ( D  + 2) (D + 4) p p  = -+ 
D D(D+2) 

To O(u2) we see that 

If we define an integral timescale r, by the formula 

y p  = a p  J dt’(tr B(t) B(t’)). 
0 

7, = ~ dt(trB(t)B(O)) 
(B(0)2)  -m 

(2.24) 

(2.25) 
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and note that (B(0)') = $2, (2.26) 

where f12 is the mean square vorticity of the turbulence, then we have an estimate 
for y p ,  namely, 

In particular, 
(2.27) 

= 2(D + 2) y3  = 20(D + 2) 

In the Markovian limit where the correlation time of the velocity field is small 
compared with the eddy circulation time Kraichnan (1974) showed that the modulus 
of the line element 2 is log-normally distributed. This implies that y p  has a linear p -  
dependence, i.e. y p  = a+ bp. This result coincides with the above analysis if all terms 
of a t  least O(u3) are negligible. In'most circumstances, however, this is too strong an 
assumption. As we shall see in §§4-s odd-order terms are particularly interesting for 
the relative stretching rates of line and surface elements where the velocity field lacks 
time-reversal invariance. 

3. Numerical simulation of turbulence 
The turbulence was represented by an incompressible random velocity field which 

was chosen from a Gaussian distribution according to ideas of Kraichnan (1970) and 
Drummond et al. (1984). In  order to make the calculations a little easier the 
autocorrelation function was chosen to be of a simple kind and was characterized by 
only one length- and timescale. However, the simulation does not depend for its 
success on this choice of spectrum for the turbulence or on the precise number of 
relevant timescales. All the computations were carried out a t  the Rutherford 
Laboratory, Abingdon, and a t  the Department of Applied Mathematics and 
Theoretical Physics, Cambridge. At the Rutherford Laboratory we used an AMT- 
DAP 510, a 32 by 32 array-processor. In Cambridge we used an AMT-DAP 610, a 64 
by 64 array-processor. 

The velocity field u(x,t) is generated as a sum of Fourier components, each of 
which is determined by certain parameters distributed according to various 
probability distributions. A typical member of the velocity field ensemble in three- 
dimensional space is then realized by 

N 

u(x,t) = a  pcos($.")-g" A k . ~ i n ( $ ~ ) )  A kncos(kn*x+w"t+#") 

+ (g" cos ( $") +f" A k' sin (p)) A k" sin (k" .x  + w"t + $"), 
n-1 

(3.1) 

where k" is distributed uniformly on a sphere with radius k,, w" is chosen from a 
Gaussian distribution P(w) = (2nwo)-+exp ( -w2/203, $" is an adjustable helicity 
parameter which we set to $" = $ for all n and $ E [0, in], f" ,gn are distributed 
uniformly and independently over the unit sphere, $" is distributed uniformly and 
independently between 0 and 2n, a is a normalization factor a = ( 3 / 2 N ) ~ u 0 / k , .  

I n  two dimensions a particular member of the velocity field ensemble is realized by 

N 

U&t) = s.l,k~cos(k".x+w"t+$"), 
n-1 

where eij is a total antisymmetric tensor, a is a normalization factor a = (2 /Nj~u , /k0 .  
The models therefore have a timescale w;l and a lengthscale ki1. The eddy circulation 
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FIQURE 1.  Line stretching in three dimensions : the various normalized moments exp ((logl)) and 
(P)$ ,p  = { 1,2,3} are plotted versus time, which was measured in terms of the correlation time of 
the velocity field. We set u, k, = w,, = 1 and the number of Fourier modes in the velocity field is 32. 
The results are averaged over 500 velocity fields. 

time is (kou0)-', where uo is the mean-square velocity. The parameter D is kouo. In 
most of our simulations N was chosen to be 32 but other values of N have also been 
studied for the purposes of comparison. 

The method of simulation comprises choosing a set of flows and following a number 
of particles distributed in different configurations in the flow in such a way that two 
nearest neighbours are separated by a t  least two correlation lengths of the flow field. 
Array-processors are particularly suited for these calculations as 1024 or 4096 
particles can be followed at once. At each timestep the particle position and the first 
spatial derivatives were calculated and different y p  values were evaluated. As an 
integration procedure we used an algorithm based on ideas of Burlisch & Stoer (see 
Press et al. 1986). 

Numerically we measured the different moments (log ( I ) )  and ( P ) , p  = {l, 2,3} as 
a function of time. In  figures 1 and 2 we plot exp ((logl)) and ( P ) + , p  = {1,2,3} 
versus time in three and two dimensions for uo k, = wo = 1. I n  tables 1 and 2 we 
compare the estimates of (2.27) with the numerical results. 

As the y p  are just an O(u2) approximation, we do not expect these predictions to 
be very accurate. However, one can use these approximations to estimate roughly 
the ratios of the different stretching exponents. Clearly the results confirm the 
existence of the time independent y p .  

In  the presence of helicity ($ = in) the stretching moments did not change, see 
figure 3. Helicity does not change the Gaussianity of the random velocity field that 
we used in our simulation. As long as the velocity field ensemble does not contain 
odd-order correlation functions helicity only affects the rotation matrix R of (2.11), 
i.e. the antisymmetric part A of W of (2.10), instead of affecting the symmetric part 
which is important for the stretching of the line element. 

The general picture first proposed by Batchelor, then, does hold although it is more 
complicated in detail since the existence of the distribution he proposed implies the 
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FIGURE 2. Line stretching in two dimensions: the various normalized moments exp ((logl)) and 
( Z p ) f , p  = { 1,2,3} are plotted versus time, which was measured in terms of the correlation time of 
the velocity field. We set u, k, = 0, = 1 and the number of Fourier modes in the velocity field is 32. 
The results are averaged over 500 velocity fields. 

numerical 

D = 3 analytical (u,k,)lwo = 1 (u, koflw, = 2 (a0 ka)/wo = 3 

YIIYO 1.33 1.30 k 0.02 1.32 f 0.02 1.35k0.03 
YJYO 1.66 1.57 k 0.02 1.63 k0.03 1.75 k0.06 
Y3IYo 2.00 1.94k0.03 1.97 k 0.05 2.12 kO.09 

TABLE 1 .  Comparison of the ratios yp /yo ,p  = { l ,  2,3f from the numerical simulation with the 
estimates of (2.27) in three dimensions 

numerical 

D = 2 analytical (u,k,)/w, = 1 (u,ko)/wO = 1.5 (u,k,)/w0 = 2 

YIIYO 1.50 1.46 f 0.02 1.48 & 0.01 1.51 kO.01 
Y*IYo 2.00 1.95 & 0.02 1.97 kO.02 2.05 k 0.02 
Y h o  2.50 2.45 k0.02 2.48k0.03 2.59 k0.02 

TABLE 2. Comparison of the ratios y p / y o , p  = {1,2,3} from the numerical simulation with the 
estimates of equation (2.27) in two dimensions 

equality of the y p ,  and they are clearly distinct both on theoretical grounds and on 
the basis of the simulation. 

4. Surface element stretching 
For incompressible flow, surface element stretching only occurs in three and higher 

dimensions. We consider only D = 3.  The theory of surface element stretching has 
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been considered by different authors (see Batchelor 1952; Cocke 1969; Orszag 1970; 
Kraichnan 1974). However, we have some different points to make. Our analysis is 
very close to that of Kraichnan (1974) but we apply it to the whole sequence of 
exponents y p ,  so we shall present our analysis fairly explicitly. 

It is convenient to consider a triad of line elements I , ,  I , ,  I ,  being transported along 
with the particles in the fluid, each evolving according to the rules exhibited in $2, 

(4.1) 
that is 

l a i ( t )  = cJijlaj(O)* 

We introduce the surface elements La (a  = 1,2,3)  where 

La = 1, A 1, (4.2) 

La.lb = vdab ,  (4.3) 

({a, b,  c> are a cyclic permutation of {1,2,3}). We have the result 

where V is the volume of the parallelepiped spanned by I , ,  f,, 1,. Because the flow is 
incompressible V is independent of time. This tells us that the time evolution of the 
surface elements proceeds according to 

La,(t) = &tj(t)Laj(o), (4.4) 

where Q(t) = [U-'(t)lT. (4.5) 

The area of the plaquette a is A,  = ILaI 

so A: = L;f(O) QT(t) Q(t)  La(0). 

On the basis of (4.7), we see that Q ( t )  is playing the role that U(t)  did for line 
elements. We now show that, after directional averaging of La, which is appropriate 
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in isotropic turbulence, Q ( t )  and QT(t) can be interchanged. This is most easily seen 
for A: ( p  = 2 in the notation of $2) itself. Directional averaging yields 

A: = f t r  QT(t) Q ( t ) ,  (4.8) 

but using the cyclic property of the trace, this becomes 

A: = + tr Q ( t )  QT(t), (4.9) 

that is A: = +tr  [(U-l(t))TU-l(t)]. (4.10) 

This means that we can now view U-l(t) as playing the role of U(t) in the line element 
case. This allows us to relate the time-reversal properties of the turbulent velocity 
field ensemble to the statistics of area element stretching. The point is that U-l(t,) 
is the transformation matrix for a time reversed flow 

u ( x ,  t )  + U T ( X ,  t )  = - u(x, to - t ) .  (4.1 1) 

Therefore, if the turbulent velocity field ensemble is time-reversal invariant, so that 
the reverse flow appears as frequently as the original flow, it follows that U-l(t) has 
the same statistical properties as U(t). This means that y2 will have the same value 
for both line elements (controlled by U(t)) and area elements (controlled by U-l(t)). 

In fact the argument can be extended to any power of A ,  in the following way. 

(4.12) c = P ( t )  (U-l(t))T- 1 
First we define 

and C = (u-l(t))Tu-yt)- 1, (4.13) 

and note that C = CT, C = C T  and 

t r  C‘ = tr (C‘)r. (4.14) 

Now AIE = c % ( G ( O )  CLa(0))“ (4.15) 

for some coefficients a,. When we average (L:(0)CL,(O))fl over the directions of 
L,(O) we obtain a result which is a sum of terms of the form 

t r  C‘1 tr C‘2 .. . tr C‘m, (4.16) 

where y1+r2+ ...+ r m  = n. (4.17) 

From (4.14) we see that we can replace C in (4.16) by C‘. This amounts to 
interchanging U-’(t) and ( U-l(t))T in the expression for the directionally averaged 
value of A;. This is the result we wished to obtain. It follows that for stationary, 
homogeneous, isotropic and time-reversal-invariant turbulence y p  has the same 
value for both line and area element stretching. 

The model of turbulence which we introduced in $ 3  and used in our simulation is 
a Gaussian model. As pointed out by Kraichnan (1974) such a model is necessarily 
time-reversal invariant. This follows from the fact that its properties are entirely 
determined by the two-point function 

d i j (x -x ’ , t - t ’ )  =(Ui(X,t)Uj(x’,t’)). (4.18) 

m 

fl-0 

The general form of d in isotropic turbulence is 

At,@ - x’, t - t ’ )  = a( Ix - X’I, t - t ’ )  cYij + b( Ix - X’I, t - t’) (2- X’),(Z -Z’), 

+ c( Ix -XI], t - t ’) “<,&(X -2qk. (4.19) 
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FIGURE 4. Surface stretching in three dimensions : the various normalized moments exp ((log A , ) )  
and (&,p = {1,2,3} are plotted versus time, which was measured in terms of the correlation 
time of the velocity field. We set uo k, = w, = 1 and the number of Fourier modes in the velocity 
field is 32. The results are averaged over 500 velocity fields. 

Y$lY6 Y W  Y ; h :  Y W  
1.04+0.01 l .OO~O.01 0.98+0.02 0.97 k0.02 

TABLE 3. Comparison of the stretching exponents y p  calculated from the surface with those 
calculated from the line (y;  = yybce, ya = y'p'"") 

From (4.18) it is obvious that d is invariant under the simultaneous interchanges 
i clj, x c, x', t t) t'. From (4.19) it is invariant under the simultaneous interchanges 
i t) j, x t) x'. It follows that it is separately invariant under the interchange t t) t'. This 
is equivalent to the replacements t -+ - t and t' + - t'. Hence the Gaussian ensemble 
is time-reversal invariant, hence we expect line and area stretching to share common 
values of the exponents yp. 

The numerical simulations of the growth of the different moments of the surface 
area were carried out in an analogous way to those of the line stretching moments. 
Particle positions and the normal to the surface were calculated at  every timestep 
and the A: were evaluated. 

In figure 4 we plot exp ((logA,)) and (A:)B,p ={l, 2,3} versus time for u, k, = 
w, = 1. These results clearly confirm that the stretching exponents y p  are different. 
Table 3 compares the stretching exponents calculated from the surfaces with those 
calculated from the line. They are almost identical within the statistical errors. 

5. Non-Gaussian turbulence 
It is obvious that realistic turbulence (even when stationary) cannot be time- 

reversal invariant since it is generally associated with an energy cascade which 
proceeds in one direction from longer to shorter lengthscales. Clearly it is physically 



54 I .  T. Drumrnond and W .  Munch 

important to investigate the breakdown of time-reversal invariance. It follows from 
the analysis of the preceding section that such a model is necessarily non-Gaussian. 

Following a suggestion by H. K. Moffat we construct a new velocity field u(x,t) 
from the Gaussian field u(x, t )  by forming the combination 

u(x,  t )  = pu(x,  t )  + h[u(x, t )  -Vu(x, t ) l p  

= pu(x, t )  + hw(x,  t ) ,  (5.1) 

where [a (x ) lp  means the divcrgenccless part of a ( x )  ; that is, in a formal notation 

(5.2) 
1 
V2 

[a(x)] ,  = a ( x ) - V - V * a ( x ) .  

This extra term is inspired by the quadratic term of the Navier-Stokes equations. 
The form of u(x, t )  in terms of the basic modes of u(x, t )  is exhibited in the Appendix. 

Because of its quadratic structure it is clear that  the time-reversal properties of the 
new term are different from those of the Gaussian field. Both velocity fields u(x,t) 
and w(x,  t )  are time-reversal invariant. They transform differently under time- 
reversal, however. Whereas the velocity field u transforms according to  

u(x ,  t )  + uT(x, t )  = - u(x ,  t o - t ) ,  (5.3) 

w(x , t )+wT(x , t )  = w(x , t , - t ) .  (5.4) 

the velocity field w transforms according to 

Only the combined velocity field v lacks time-reversal invariance if the coefficients {p, 
A} are roughly of the same order of magnitude. For p >> h or p 4 h the velocity 
field u is approximatcly time-reversal invariant. One straightforward way to test this 
is to compute the ensemble average of the diagonalized form of the symmetric rate 

(5.5) 

For the Gaussian model we expect this to have the form (see also $6) 

i" 8 8 1 ,  (5.6) 

jk ; &)> (5.7) 

0 0 -y 

where a numerical evaluation yields y = (0.500+0.001) (uo k,) for the velocity field u. 
This is just the structure we would expect for a time-reversal situation since after an 
appropriate reordering of the axes the above form is invariant under a reversal of the 
sign of the elements of S,. 

When h , p  + 0 we can detect the breakdown of time-reversal invariance from the 
presence of a non-zero result for the intermediate eigenvalue. That is, the expectation 
value of the diagonalized rate of strain tensor is now 

w h e r e a > p > ,  y a n d a + P + y = O .  
In figure 5 we show a, p, and y as a function of h ( p  = 1) where the units on the 

y-axis are in terms of u, k,. We see that p vanishes for h = 0 and that limA+m p = 0. 
The maximum breakdown occurs for Ihl x 0.7. The sign of the breakdown depends on 
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FIGURE 5. The eigenvalues of the symmetric rate-of-strain tensor &ut,,+uj,,) in terms of the mean 
values uo k, as a function of A ,  (p = l ) ,  see (4.1). 
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FICWRE 6. Line and surface element stretching as a function of time. For A = 0 . 7 , ~  = 1 lines grow 
faster than surfaces. 

the sign of A. If h > 0, p < 0 and line elements grow faster than surface elements. For 
h < 0 we find p > 0 and surface elements expand at a greater rate than line elements. 
These results are illustrated in Figures 6 and 7 where we plot y1 of a surface area 
element and y1 of a line element. In figure 6 we set h = 0.7 and find that line elements 
grow faster than surface elements. In  figure 7 we set h = -0.7 and see that surface 
elements grow faster than line elements. 
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FIQURE 7. Line and surface element stretching as a function of time. For h = - 0 . 7 , ~  = 1 surfaces 
grow faster than lines. 

6. Conclusions 
We have investigated the stretching of line and surface elements in a simple model 

of turbulent flow. The stretching in both cases is represented by a set of exponents 
{y,}, one for each moment of the stretched quantity. The measured values of these 
exponents depended on the particular moment but both line and area stretching 
exhibited the same set of moments. We identified a reason for this in the time- 
reversibility of the Gaussian velocity ensemble which we used to represent the 
turbulence. Real turbulence, which is subject to the Navier-Stokes equations is not 
time-reversal invariant. We have therefore introduced a simple non-Gaussian model 
of turbulence which lacks time-reversal invariance and we have shown the 
discrepancies between line and area stretching. 

In order to understand the kind of information about the turbulence which may 
be inferred from information of this kind we re-examine an argument due to 
Batchelor concerning the statistics of angles between line elements attached to the 
same material point. 

The area element spanned by line elements I,  and Z3 is 

L,  = (Z, A Z31 = I ,  1, sin (O,,,).  

L r = 1+1+ i i m  
It follows that 

Ll '2 '3 sin (e2,3)' 

On averaging over the ensemble we find 

Therefore assuming the equality of area and line stretching we see that 
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It follows that on the average either the angle between two line elements or its 
complement is decaying a t  the same exponential rate as the line elements are 
stretching. This means that the area element spanned by 1, and 1, is drawn out into 
a long thin shape, with 1, or 1, either nearly parallel or antiparallel. 

If we now look a t  a volume element spanned by three line elements we have 

v = 1, * 1, A 

= l,.L, 

= ZlL, sin ($1), (6.4) 

where q51 is the angle between ll and the plane of the surface element L,. Since the 
incompressibility of the flow implies that V = 0 we obtain the result 

therefore, 

The height of the volume element thus reduces a t  the same exponential rate as the 
line elements expand. 

In regions which dominate the stretching process, therefore, we expect the 
symmetric part of the rate-of-strain tensor, referred to principal axes, to have the 
form of (5.6) as was verified numerically. The effect of stretching and contraction 
suggests that  the area element will be orientated with its long sides in the 1-direction 
and its normal in the 3-direction. Further confirmation of the picture comes from a 
measurement of the statistical distribution of 8, the angle between the normal to the 
surface element and the maximum eigenvector of the rate-of-strain matrix. This is 
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exhibited in figure 8 and clearly shows a strong maximum a t  8 = i x ,  i.e. 

I .  T.  Drummond and W.  Miinch 

cos (e)  = 0. 
In more realistic models of turbulence which violate time-reversal invariance the 

picture will change. The diagonalized rate-of-strain matrix in the dominant 
stretching regions will have the more general form of (5.7). On a simple generalization 
of the previous picture we would expect the line stretching exponent to be a while 
the area stretching exponent would be a+p. The value of /3 therefore will measure 
the breakdown of time-reversal invariance and its sign will determine the relative sizes 
of line and area stretching exponents. This picture was confirmed by the result of the 
previous section where we illustrated the idea that relative stretching rates of line 
and area elements were controlled by the sign of ,8. 

This work was supported by the EEC Twinning Contract ST2J-0029- 1-F. 

Appendix 
The velocity field u(x ,  t )  consists of two parts, 

u(x,  t )  = u(x ,  t )  +hw(x ,  t ) ,  

where w = f W ' V ) U I p  

and [a], is the divergence-free part of a ; f is a normalization factor. 
The velocity field u ( x ,  t )  is generated as a sum of Fourier components, each of which 

is determined by certain parameters distributed according to various probability 
distributions. A typical member of the velocity field ensemble in three-dimensional 
space is then realized by 

M 

u ( x , t )  = a  ;I: (fm~os($m)-gm A k,sin($")) A k,cos(k,.x+w,t+$,) 
m-1 

+ (8, cos ($,) +f, A R ,  sin (9")) A km sin (km.x  + w, t + $,), 
where k, is distributed uniformly on a sphere with radius Lo, w, is chosen from a 
Gaussian distribution P ( w )  = (2xwo)-iexp ( - w a / 2 w 0 ) ,  $m is an adjustable helicity 
parameter which we set to $" = $ for all n and qk[0,3r], f m , g m  are distributed 
uniformly and independently over the unit sphere, $m is distributed uniformly and 
independently between 0 and 2 x ,  a is a normalization factor a = (3/2M)iu0/k0. 

Having chosen u(x,  t )  the velocity field w(x ,  t )  can be represented by 

where 
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The model therefore has a timescale 00’ and a lengthscale kol .  The eddy circulation 
time is (kou0)-l, where uo is the mean-square velocity. The parameter D is kouo.  In 
most of our simulation M was chosen to be 8 but other values of M have also been 
studied for the purposes of comparison. 

In  the previous sections of this paper we have seen that the helicity paramet,er @ 
did not seem to have much impact on the relative stretching rates for our models. We 
want to  point out, however, that if we set @ = in the velocity field w vanishes as 

((v A U ( X ,  t ) ) i u j ( ~ ’ ,  t ’ ) )  = ko(u,(x, t )  uj(x‘ ,  t ’ ) ) .  

This is a special feature of our choice of the velocity field 8 .  In this context the 
helicity parameter can even be used to  restore (!) time-reversal invariance. 
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